RSS

Reading A Biography of World’s Most Famous Equation

Deepak Subedi

When we started to conduct a regular series of popular lectures on Einstein’s life and achievement to mark the World Year of Physics 2005 in connection with Einstein Centenary Year, I was looking for a book which consisted of historical description of Einstein’s monumental work in Physics. To my surprise, I found a book entitled A Biography of World’s Most Famous Equation written by David Bodanis. After going through the book, I was encouraged to write a review on its praise.  
 
The book presents a very good description of the development of basic conservation laws in Physics. The author has skillfully presented the physical theories in extremely simple and interesting way so that readers without the background of Physics and Mathematics can also grasp the theme. The book has been successful to become popular among the popular science books. The Times magazine wrote about the book: “with skill and plenty of colorful anecdotes Bodanis traces the intellectual ancestry of E=mc2 “. 
 
The book is divided into five parts. In the first part, the author introduces the birth of the equation. It gives glimpses of the childhood of the equation which surrounds around 1905 when the three revolutionary papers by Einstein were published. One of these papers was on special theory of relativity which consisted of the ever popular equation. 
 
The second part of the book discusses the development of the law of conservation of energy and highlights the contribution of Michael Faraday in this work. It says that Faraday discovered his law of Electromagnetic induction showing a link between electric and magnetic fields which once seemed totally different. An extraordinary vision of energy concept was created by Faraday’s work. It helped to formulate the law of the conservation of energy. The scientific community was more confident that every other form of energy could similarly be shown deeply inter-connected.
 
In the third part of the book, the author presents a detailed history of the development of the law of conservation of mass.  For a long time the concept of mass had been like the concept of energy before Faraday. With his meticulous experiments, Lavoisier showed that matter could convert from one form to another, yet it will not burst in and out of existence. This law of conservation of mass was as much important as Faraday’s work on energy. The substances that fill our universe can be burnt, squeezed or hammered to bits but they won’t disappear. This finding worked as building block for a more general law of conservation which was put forward by Einstein at the beginning of 20th Century.  Einstein later proved in an extraordinary way that there was a link between these two domains. So, a more general law of conservation of mass and energy taken together was formulated. The most remarkable aspect of the discovery was to show that mass and energy are equivalent. It unleashed a secret that tremendous amount of energy can be released from a very small amount of matter.
 
The next part of the book covers period around the second world war when the first experimental results of nuclear fission of heavy elements were reported. In fact these were the experimental evidences to validate the equation. 
In the final part of the book, the author switches away from war and describes several areas where the equation has been applied. This period has also been termed as the adulthood of the equation.
 
I liked this book very much. So far as I know there is also a documentary available based on this book. I recommend this book to anyone who would love to peer into the history of the amazing world of physics.
 
Works consulted
 
F. Macdonald, Albert Einstein, Orient Longman Limited, Mumbai, 1994.
D. Bodanis, A Biography of the World’s Most Famous Equation, Pan Books,
 
Leave a comment

Posted by on September 10, 2017 in Criticism

 

Science in Daily Life

– Pushpa Raj Adhikary

Most people in our society  take science as something strange and crazy,  which are the works of Newton, Einstein and few others persons known as scientists. The works of so-called scientists led to the invention of rockets and bombs which are threats to human civilization. Also science contradicts the age-old belief  on the existence of god, hell and heaven. Wrong notions about science and technological advancement are the main causes of our ignorance and backwardness.  As a consequence, we are suffering from poverty, shortage of food, diseases and lack of medical facilities, lack of drinking water, shortage of electricity and so many other  benefits, which people in the developed world enjoy.
We have to dispel our mistaken notion of science and technological advancement if we want to get rid of most of our problems related to underdevelopment. The history and survival of humankind is a story of the growth of science. The desire to survive led early human to learn to hunt. In that process, they devised tools. The discovery of agriculture led to the process of growing food through irrigation, farming and cropping. The curiosity to communicate with others led to the invention of language and the art of communication which continued to grow further in the form of written language, printing  and wireless communication. This was a revolution continuing still today in the development and spread of internet. The urge to go to different parts of the earth led to the growth of transportation. Now the movement of humans is not confined only on the surface of earth bu to the top of the mountain, deep inside the sea and as far as the planet mars. People are thinking about inter-space travel. There are many other fronts of developments which are the direct consequence of the development of science and technology. Notably among them is the advancement of medical science and medical technology.
Science is not something which concerns only scientists. We wake up in the morning and see that the sun rises or appears in the east. In the evening the sun sets or disappears in the west. We are all familiar with the changing seasons. Some parts of the earth have heavy rain whereas other parts have snow and very hot deserts. The nature of plants and animals, even the colour of human beings in different parts of the earth differs. We need water to drink .We don’t drink water from all sources. Water from some source may upset our stomachs. We have diseases like malaria, typhoid, and hepatitis and nowadays AIDS. Insects crawl on grounds, birds fly and animals and human beings walk on ground. Many animals live on grass and green plants but human beings need cooked food.
During winter nights, if you look at the sky, you see tiny twinkling dots known as stars. If you look more closely, you find several differences among the stars. Stars appear only in nights. Moon also appears only in nights but not at all nights. Sometimes our sun and full moon are covered by strange black shadows known as eclipse.

We all are aware of the phenomena described in the last two paragraphs. We can cite many other natural phenomena which happen in our daily life. During illness we take pills and capsules of medicine and get cured. Sometimes we do take medicine in the form of injection but how many of us and how often do we ask ourselves why and how different natural phenomena happen? Why sun always rises in the east and sets in the west? Why do we get monsoon more or less in the same time each year? Why we need medicine when we are ill and how medicines cure us? How different varieties of breads, cheese and butter which appear in our breakfast table are prepared? Very recently we have started showing concern for our environment. What has happened to our environment and how? Why the rapid industrialization has dismantled some of the natural resources?
Many of us take all things and happenings around us without any wonder. But there are persons who wonder about these things. They are curious to learn more about their surroundings and the happenings with the question “Why?” and “How?” They wonder why the sun shines and what cloud is like. They wonder why a book falls to the ground when we drop it. They wonder at the stars, planets, and the moon.They wonder as how star is born, how many stars are there, why there are patches in the full moon, how vast is the universe and so many other questions. Most discoveries came out because someone wondered.
But discoveries are not made by wondering alone. You may wonder and ask questions as “How?” and “Why?”But who answers theses questions? You observe, listen, feel and learn to satisfy your curiosity. By doing so you make some idea about something or some happening. In other words, you come out with some explanation.  If this explanation alone satisfies you, then you are not a scientist. The difference between a scientist and others lies here. A scientist likes to verify his/her understanding or explanation of something by experiment. In many cases we might have made a guess but we could not be sure. So we do the experiment and it can give us a true answer. Experiment and discovery go hand in hand.
A curious mind asks questions and comes across new riddles and puzzles. You may be bored and give up solving them. Others may come out with some valid explanations of these puzzles. But how do we know whether these explanations are correct? Those who continue to know the correct answers to these riddles and puzzles either by explanations or by experiments are scientists. Scientists have to correct their understanding or explanations and experiments again and again until they bring out the truth. Sometimes scientists discover the answers to their problems in a very short time. More often, they must experiment patiently and carefully for years before they find out what they want to know. They may do one experiment a thousand times, or a thousand different experiments just to discover one fact.
Now, if you are also intrigued to think like a scientist or think that you have a potential to be a scientist then think about the question, “Assume that the earth does not rotate around its axis. How will this affect us? Assume next that the earth does not go around the sun, what will happen?”
 
Leave a comment

Posted by on January 15, 2016 in Science

 

English and Scientific Research: Some Reflections

 – Deepak Subedi

When I was asked to contribute an article on the importance of English language for scientific research, I felt I got an opportunity to express my gratitude to the language which gave me an enormous access to good books written by scholars around the world. Without the knowledge of English, I would have to rely on books written only in our native language, which would have certainly narrowed my thinking. My simple understanding is that our ability to think is proportional to the number of good books we read. Also, it is generally accepted that knowledge is for the brain as is food for the body, and that a person with knowledge of different languages has greater vision and wider horizon.

I was motivated to learn English by my revered father since my childhood. Although my father himself never had formal education, he had gained some practice of spoken English during his service in Indian army. He had a strong desire to educate his children in English medium. I think this might have been due to the influence of British officers in India. He used to tell me fascinating stories about the additional benefits he used to receive in the army unlike his colleagues by virtue of his knowledge of English, although limited. Even with this limitation, he was supposed to be superior to others, and was assigned some official tasks during the war time which avoided the risk of being deployed to the front.

In spite of a moderate income,  my father always stressed on educating children in good schools. Although our family was based on a village, my father settled in the town only to provide us good education with additional tuition in English.  So far as I remember, he was the first person in our town to arrange tuition in English from the primary level. It was during this time that I met my most favorite teacher of English, Balkrishna Shrama, who inspired me to learn. He was a noble teacher with amazing skills of delivering spellbinding lectures. With his guidance, I experienced the joy of learning new words in English and writing them nicely in four-lined papers.  Since then, I started learning English spontaneously.

I realized the real importance of knowing English when I joined I. Sc. in Amrit Science Campus in 1989. All our subjects were taught in English. Had I been poor in English, I would have certainly been discouraged from studying science.  The knowledge of English helped me in learning the major subjects like Physics, Chemistry, Biology and Mathematics. I had a huge advantage over my classmates with a weaker background of English. Meanwhile, some of our teachers had just returned from US with terribly twisted tongue, and many of our friends who were from remote areas of Nepal got frustrated with the US-style pronunciation. Students who had their schooling in English medium had no difficulty in grasping the lectures in the major subjects.

Well, these were some of my recollections about my background in the English language. Let me discuss a little about the importance of the use of English in the field of science.

In 1931 Vladimir N. Ipatieff, a Russian-American chemist, had begun to take lessons in English at the age of sixty-four. He was already a well-known scientist but had to learn English in that age in order to continue his research in the USA. He probably was under the influence of the “publish or perish” dictum so common in the field of research. But his story simply highlights the necessity of knowing a language of wide international readership in order to popularize researches in science.

Michael Faraday said that any researcher has to follow three major steps: “work, analyze and publish.” All the three parts are equally important. However, the importance of the language appears in the third part — publishing. The real output of any scientific research is measured by its impact, hence the level of international journals is determined by their impact factor. How many people cited our papers is more important than how many papers we wrote. To make our papers accessible to a large number of readers, we have to publish our results in a language understood by a large population.  Thus one has to publish his/her findings in English.

Most of the world’s leading scientific journals are published in English. It has been reported that researchers from non-English speaking countries have to spend a significant portion of their time in getting their reports and research papers translated/written in English. This obviously steals their precious time from laboratory work. For example, in Japan English is becoming the language of basic science resulting in the gradual disappearance of  publications in Japanese. RIKEN, one of Japan’s most comprehensive groups of research facilities, has claimed that its scientists published about 2000 original reports in English in 2005, but only 174 in Japanese. One report shows that editing companies in Japan charge researchers $ 500 to $ 800 per manuscript. Language training can cost $2000 for a ten-week course. These costs are additional burdens and slow down scientific activities in laboratory.

In fact, this should not have been the period for spending so much time for writing the paper alone. Had their schooling been in English, as that of ours, the researchers could have devoted more time for their experiments than exercising for language. In this respect, we should feel fortunate; we learned basic sciences in English medium at school and the university. In several international conferences and seminars, I have observed the difficulty faced by scientists from the countries which are quite developed in science and technology but are non-native English users. In spite of their good research results, they are sometimes nervous during presentations due to the difficulty in expressing their ideas clearly in English.  On the other hand, researchers who studied their courses in English are more confident in presentations even if the merit of their research work is not of high standard.

Another case where proficiency in English plays a vital role is in the preparation of research grants proposals. Even a promising project proposal may be rejected because of the lack of logical reasoning. It may be argued why a researcher should worry about English when one can easily consult with professional editors to prepare a proposal. But the fact is that professional editors may not know the technical ideas of the project, and that sometimes this joint venture may lead to negative results. Considering the growing need of disseminating research results to a wider population, many Asian and European countries, which used to teach science courses in their own native languages, are gradually adopting English as the language of science.

Summing up, today no discipline can function in isolation. Since a large number of interdisciplinary subjects like environmental science, biotechnology, biomedical engineering, engineering physics etc. are emerging, people of different areas of expertise have to work together. Professionals from different disciplines find English quite comfortable to communicate among themselves. Also, professionals in the discipline of English language must also constantly update themselves because the world is changing rapidly due to the advancement in science and technology.  For the survival in this competitive and rapidly advancing world, everyone has to be able to grasp the new challenges and opportunities. Due to the latest advancement in information technology, specially with the introduction of internet services and cellular phones, the world has become like a village. Whoever gets the latest information at the earliest will come ahead and those who miss will certainly lag behind. In which language this communication is being made in a broad scale? Of course, English.

[Courtesy: http://neltachoutari.wordpress.com May 2010]

 

 

 
Leave a comment

Posted by on December 21, 2015 in EXPRESSIONS, Reflections